123 research outputs found

    A magnetic thrust action on small bodies orbiting a pulsar

    Full text link
    We investigate the electromagnetic interaction of a relativistic stellar wind with small bodies in orbit around the star. Based on our work on the theory of Alfv\'en wings to relativistic winds presented in a companion paper, we estimate the force exerted by the associated current system on orbiting bodies and evaluate the resulting orbital drift. This Alfv\'enic structure is found to have no significant influence on planets or smaller bodies orbiting a millisecond pulsar. %influence on the orbit of bodies around a millisecond pulsar. On the timescale of millions of years, it can however affect the orbit of bodies with a diameter of 100 kilometres around standard pulsars with a period P∌P \sim 1 s and a magnetic field B∌108B \sim 10^{8} T. Kilometer-sized bodies experience drastic orbital changes on a timescale of 10410^4 years.Comment: accepted for publication in "Astronomy and Astrophysics

    Thermal Instability in a Cooling and Expanding Medium Including Self-Gravity and Conduction

    Get PDF
    A systematic study of the linear thermal stability of a medium subject to cooling, self-gravity and thermal conduction is carried out for the case when the unperturbed state is subject to global cooling and expansion. A general, recursive WKB solution for the perturbation problem is obtained which can be applied to a large variety of situations in which there is a separation of time-scales for the different physical processes. Solutions are explicitly given and discussed for the case when sound propagation and/or self-gravity are the fastest processes, with cooling, expansion and thermal conduction operating on slower time-scales. A brief discussion is also added for the solutions in the cases in which cooling or conduction operate on the fastest time-scale. The general WKB solution obtained in this paper permits solving the problem of the effect of thermal conduction and self-gravity on the thermal stability of a globally cooling and expanding medium. As a result of the analysis, the critical wavelength (often called Field length) above which cooling makes the perturbations unstable against the action of thermal conduction is generalized to the case of an unperturbed background with net cooling. As an astrophysical application, the generalized Field length is calculated for a hot (10^4 - 10^8 K), optically thin medium (as pertains, for instance, for the hot interstellar medium of SNRs or superbubbles) using a realistic cooling function and including a weak magnetic field. The stability domains are compared with the predictions made on the basis of models for which the background is in thermal equilibrium. The instability domain of the sound waves, in particular, is seen to be much larger in the case with net global cooling.Comment: 36 pages, 6 figures, accepted by ApJ, probable publication date: April 20, 200

    Alfven Wave-Driven Supernova Explosion

    Full text link
    We investigate the role of Alfven waves in the core-collapse supernova (SN) explosion. We assume that Alfven waves are generated by convections inside a proto-neutron star (PNS) and emitted from its surface. Then these waves propagate outwards, dissipate via nonlinear processes, and heat up matter around a stalled prompt shock. To quantitatively assess the importance of this process for the revival of the stalled shock, we perform 1D time-dependent hydrodynamical simulations, taking into account the heating via the dissipation of Alfven waves that propagate radially outwards along open flux tubes. We show that the shock revival occurs if the surface field strength is larger than ~2e15 G and if the amplitude of velocity fluctuation at the PNS surface is larger than 20% of the local sound speed. Interestingly, the Alfven wave mechanism is self-regulating in the sense that the explosion energy is not very sensitive to the surface field strength and initial amplitude of Alfven waves as long as they are larger than the threshold values given above.Comment: 7 pages, 3 figures embedded, submitted to Ap

    An Ab Initio Approach to the Solar Coronal Heating Problem

    Full text link
    We present an ab initio approach to the solar coronal heating problem by modelling a small part of the solar corona in a computational box using a 3D MHD code including realistic physics. The observed solar granular velocity pattern and its amplitude and vorticity power spectra, as reproduced by a weighted Voronoi tessellation method, are used as a boundary condition that generates a Poynting flux in the presence of a magnetic field. The initial magnetic field is a potential extrapolation of a SOHO/MDI high resolution magnetogram, and a standard stratified atmosphere is used as a thermal initial condition. Except for the chromospheric temperature structure, which is kept fixed, the initial conditions are quickly forgotten because the included Spitzer conductivity and radiative cooling function have typical timescales much shorter than the time span of the simulation. After a short initial start up period, the magnetic field is able to dissipate 3-4 10^6 ergs cm^{-2} s^{-1} in a highly intermittent corona, maintaining an average temperature of ∌106\sim 10^6 K, at coronal density values for which emulated images of the Transition Region And Coronal Explorer(TRACE) 171 and 195 pass bands reproduce observed photon count rates.Comment: 12 pages, 14 figures. Submitted to Ap

    Statistical Description of a Magnetized Corona above a Turbulent Accretion Disk

    Full text link
    We present a physics-based statistical theory of a force-free magnetic field in the corona above a turbulent accretion disk. The field is represented by a statistical ensemble of loops tied to the disk. Each loop evolves under several physical processes: Keplerian shear, turbulent random walk of the disk footpoints, and reconnection with other loops. To build a statistical description, we introduce the distribution function of loops over their sizes and construct a kinetic equation that governs its evolution. This loop kinetic equation is formally analogous to Boltzmann's kinetic equation, with loop-loop reconnection described by a binary collision integral. A dimensionless parameter is introduced to scale the (unknown) overall rate of reconnection relative to Keplerian shear. After solving for the loop distribution function numerically, we calculate self-consistently the distribution of the mean magnetic pressure and dissipation rate with height, and the equilibrium shapes of loops of different sizes. We also compute the energy and torque associated with a given loop, as well as the total magnetic energy and torque in the corona. We explore the dependence of these quantities on the reconnection parameter and find that they can be greatly enhanced if reconnection between loops is suppressed.Comment: 22 pages, 15 figures. Submitted to the Astrophysical Journa

    AGN disks and black holes on the weighting scales

    Full text link
    We exploit our formula for the gravitational potential of finite size, power-law disks to derive a general expression linking the mass of the black hole in active galactic nuclei (AGN), the mass of the surrounding disk, its surface density profile (through the power index s), and the differential rotation law. We find that the global rotation curve v(R) of the disk in centrifugal balance does not obey a power law of the cylindrical radius R (except in the confusing case s = -2 that mimics a Keplerian motion), and discuss the local velocity index. This formula can help to understand how, from position-velocity diagrams, mass is shared between the disk and the black hole. To this purpose, we have checked the idea by generating a sample of synthetic data with different levels of Gaussian noise, added in radius. It turns out that, when observations are spread over a large radial domain and exhibit low dispersion (standard deviation less than 10% typically), the disk properties (mass and s-parameter) and black hole mass can be deduced from a non linear fit of kinematic data plotted on a (R, Rv 2)-diagram. For a deviation higher than 10%, masses are estimated fairly well from a linear regression (corresponding to the zeroth-order treatment of the formula), but the power index s is no longer accessible. We have applied the model to 7 AGN disks whose rotation has already been probed through water maser emission. For NGC3393 and UGC3789, the masses seem well constrained through the linear approach. For IC1481, the power-law exponent s can even be deduced. Because the model is scale-free, it applies to any kind of star/disk system. Extension to disks around young stars showing deviation from Keplerian motion is thus straightforward.Comment: accepted for publication in A&

    Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas

    Get PDF
    The evolution of quasi-isentropic magnetohydrodynamic waves of small but finite amplitude in an optically thin plasma is analyzed. The plasma is assumed to be initially homogeneous, in thermal equilibrium and with a straight and homogeneous magnetic field frozen in. Depending on the particular form of the heating/cooling function, the plasma may act as a dissipative or active medium for magnetoacoustic waves, while Alfven waves are not directly affected. An evolutionary equation for fast and slow magnetoacoustic waves in the single wave limit, has been derived and solved, allowing us to analyse the wave modification by competition of weakly nonlinear and quasi-isentropic effects. It was shown that the sign of the quasi-isentropic term determines the scenario of the evolution, either dissipative or active. In the dissipative case, when the plasma is first order isentropically stable the magnetoacoustic waves are damped and the time for shock wave formation is delayed. However, in the active case when the plasma is isentropically overstable, the wave amplitude grows, the strength of the shock increases and the breaking time decreases. The magnitude of the above effects depends upon the angle between the wave vector and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar abundances either in the interstellar medium or in the solar atmosphere, as well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature where the plasma is isentropically unstable and the corresponding time and length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200

    Thin accretion disc with a corona in a central magnetic field

    Full text link
    We study the steady-state structure of an accretion disc with a corona surrounding a central, rotating, magnetized star. We assume that the magneto-rotational instability is the dominant mechanism of angular momentum transport inside the disc and is responsible for producing magnetic tubes above the disc. In our model, a fraction of the dissipated energy inside the disc is transported to the corona via these magnetic tubes. This energy exchange from the disc to the corona which depends on the disc physical properties is modified because of the magnetic interaction between the stellar magnetic field and the accretion disc. According to our fully analytical solutions for such a system, the existence of a corona not only increases the surface density but reduces the temperature of the accretion disc. Also, the presence of a corona enhances the ratio of gas pressure to the total pressure. Our solutions show that when the strength of the magnetic field of the central neutron star is large or the star is rotating fast enough, profiles of the physical variables of the disc significantly modify due to the existence of a corona.Comment: Accepted for publication in Astrophysics & Space Scienc

    Dynamics of Magnetic Flux Elements in the Solar Photosphere

    Get PDF
    The interaction of magnetic fields and convection is investigated in the context of the coronal heating problem. We study the motions of photospheric magnetic elements using filtergrams obtained at the Swedish Vacuum Solar Telescope at La Palma. We use potential-field modeling to extrapolate the magnetic and velocity fields to larger height. We find that the velocity in the chromosphere can be locally enhanced at the separatrix surfaces between neighboring flux tubes. The predicted velocities are several km/s, significantly larger than those of the photospheric flux tubes, which may have important implications for coronal heating. sComment: submitted to ApJ, 21 pages, 10 figure
    • 

    corecore